

HDX-MS based epitope mapping of antibody targeting the cysteine-rich region of IGF1R enabled by electrochemical reduction

INTRODUCTION

- Hydrogen Deuterium Exchange mass spectrometry is a powerful and flexible method for epitope mapping [1]. As therapeutic targets increase in complexity, sophisticated analytical methods are necessary for detailed and complete insights with HDX-MS.
- Online electrochemical reduction has emerged as a versatile tool for enhancing sequence coverage in heavily-disulfide bonded antigens. This technology has proven invaluable for epitope mapping in previously inaccessible targets [2,3].
- The insulin-like growth factor receptor (IGF1R) is a promising target for receptor-mediated delivery of antibodies across the blood brain barrier [4].
- This large and dynamic receptor possesses a complex disulfide-stabilized architecture that is challenging to analyze with conventional structural methods.
- We employed EC-HDX-MS to map a difficult-to-access epitope in the cysteine-rich region of a BBB-crossing single-domain antibody, VHH-IR4.

METHODS

• Two separate HDX-MS workflows were optimized to ensure comprehensive and redundant sequence coverage of the rhesus IGF1R ectodomain (eIGF1R) (**Fig. 1**).

b) Automated labeling coupled to nepenthesin digestion

Figure 1. (a) Manual and automated (b) HDX-MS workflows used to map VHH-IR4 binding profiles against eIGF1R. Two labelling time points (0.5 and 3min) were collected in all workflows, and data was collected in triplicate using a Synapt G2Si with ion mobility enabled.

• In both cases, the online electrochemical reduction was performed with a μ-Prepcell[™] SS flow cell (**Fig. 2a**) controlled by a Roxy[™] Exceed Potentiostat (Antec Scientific, The Netherlands). EC Pulse settings are shown in **Fig. 2b**.

National Research Council Canada

Conseil national de recherches Canada

EC-HDX-MS WITH MULTI-PROTESASE APPROACH ENABLES NEAR-COMPLETE SEQUENCE **COVERAGE OF FULLY GLYCOSYLATED elGF1R**

• A summary of each individual HDX-MS workflow is shown in **Table 1**. The complementarity of the individual peptide maps highlighted in Fig. 3.

Table 1. HDX Summarv				
	Pepsin		Nepenthesin	
Data Set (Pepsin)	Control	IR4	Control	IR4
HDX reaction details	20 mM Tris, 90% D2O, pD 7.0		10 mM Tris, 45% D2O, pD 7.0	
HDX time course (min)	0.5, 3	0.5, 3	0.5, 3	0.5, 3
# of Peptides	239	238	226	225
Sequence coverage	85.43%	85.43%	69.22%	69.22%
Average peptide length / Redundancy	15.42 / 3.7764	15.42 / 3.7764	11.73 / 2.6373	11.73 / 2.6373
Replicates (biological or technical)	3 technical	3 technical	3 technical	3 technical
Repeatability (average SD)	0.0597	0.0605	0.0471	0.0468
Significant differences (Δ HDX > X % D)	1.80%		4.70%	

- The combined eIGF1R coverage map (93%, 465 peptide features, redundancy of 6.9) is shown in Fig. 4. • This marks a significant improvement relative to our previous chemical reduction workflows where coverage ranged from 47-78% [5].
- Electrochemical reduction allowed for the identification of 99 cysteine-containing peptides, covering of 36 out of 39 cysteines. Importantly, 21/22 cysteine residues in the 147-residue long cysteine-rich region (CRR), were at least partially reduced (Fig. 4, dashed rectangle).
- Remaining gaps in coverage are attributed to the extensive N-linked glycosylation of eIGF1R.

INSIGHTS INTO THE VHH-IR4 BINDING PROFILE FROM HDX-MS KINETICS

• Complementary binding profiles were observed for VHH-IR4 peptide sets stemming from both workflows (Fig. 5) These include both stabilizations and destabilizations in key structural features (CRR, L1 and α -CT helix)

Figure 5. Woods plots for each HDX timepoint. Differential deuteration ($\Delta D = D_{VHH-IR4} - D_{IGF1R}$) for pepsin (a-b) and nepenthesin-II (c-d) datasets plotted versus elGF1R sequence. Each peptide feature is represented as a rectangle, with significant decreases in deuteration shown in blue, increases in red, and no significant changes in grey. Dashed grey lines correspond to $3 \times SD$ values, and significance assigned based on a 1 - p value of 0.98.

¹Human Health Therapeutics Division, National Research Council Canada, Ottawa, Canada ²Antec Scientific, LLC, Boston, MA ³University of Copenhagen, Copenhagen, Denmark

Pep + Nep

Figure 3. Contributions of each protease to the overall coverage of elGF1R.

d) Nepenthesin, 3 min c) Nepenthesin, 0.5 min · 编订的 翻尋 你们的? V247-F251 V247-F251 (CRR) (CRR) 450 600 Amino Acid Amino Acid

REGION

Figure 6. Projection combined HDX-MS datasets in three while dimensions. Significant stabilization blue. in shown IS destabilization is shown in red, along with associated sequence numbering. No significant change in deuteration is shown in grey and green for the $\alpha\beta$ and $(\alpha\beta)$ ' monomers respectively, and missing coverage is highlighted in white. For reference, the respective domains of each monomer as described in the subset box.

CONCLUSIONS

- Nepenthesin-II

REFERENCES

VHH-IR4 BINDS EPITOPE IN THE CYSTEINE RICH

Given that VHH-IR4 does not compete with binding of a known α -CT helix binder (VHH-IR5, data not shown) [5], we assigned residues 244-265 as the linear epitope of VHH-IR4.

This epitope overlaps with that of the monoclonal antibody BIIB4 [6].

Conformational changes in the L1 and α -CT helix overlap the binding site of IGF-1, the endogenous ligand of IGF1R, and may play a key role in the inhibitory activity VHH-IR4.

• To our knowledge, this is the first known single-domain antibody targeting the cysteine rich-region

• This data demonstrates the utility online electrochemical reduction in large protein systems in both manual and automated operating modes.

Sequence coverage was further improved by the complementary use of

This platform will enable the selection of anti-IGF1R nanobodies with improved functionality, and will ultimately open up new research opportunities in the area of protein trafficking and transcytosis.

[1] Zhang, M.M., et al. (2020), Anal. Chem. [2] Trabjerg, E., et al. (**2015**), *Anal. Chem.* [3] Comamala, G., et al. (**2020**). Anal. Chim. Acta.

[4] Ribecco-Lutkiewicz, M., (2018), Sci. Rep. [5] Sheff, J.G., et al. (2021), Sci. Rep. [6] Houde, D., et al. (2011), Structure.

UNIVERSITY OF COPENHAGEN

