Electrochemical Reduction of Disulfide Bonds in Proteins for Enhanced Characterization by LC-MS and HDX-MS

1. Objective

To develop a new Electrochemical Cell for disulfide bond reduction in proteins/peptides to assure:

- Excellent long term reproducibility and stability
- Avoid contamination/fouling of electrode surfaces
- High pressure stability for use in HDX-MS

2. Introduction

Electrochemical reduction of the S-S bonds has been successfully applied for the unfolding of larger proteins such as antibodies, replacing the harsh chemical reduction that often jeopardized the H/D exchange.

Until now most electrochemical flow cells used for the reduction were based on a 3-electrode configuration consisting of:

- 1. Working electrode, mostly Titanium (Ti) based
- 2. Reference electrode, Pd/H₂
- 3. Auxiliary electrode, Ti or Carbon-PEEK

To fulfill the objectives mentioned above a new flow cell was constructed.

3. New: Dual Electrode Flow Cell

Figure 1: Dual electrode μ-PrepCell
for S-S bond reduction consisting of:
1. Titanium inlet block
2. Platinum counter electrode

For more information, visit our booth #614

<u>Jean-Pierre Chervet</u>¹, Hendrik-Jan Brouwer¹, Pablo Sanz de la Torre¹, Martin Eysberg², Nicolas Santiago² ¹Antec Scientific, Zoeterwoude, The Netherlands; ²Antec Scientific (USA), Boston, MA, USA

4. Instrumental Setup and Conditions

Figure 2: Schematics of Flow Injection Analysis EC-MS : 1) Sample infusion pump, 2) injection value, 3) HPLC loading pump, 4) ROXY Potentiostat equipped with dual electrode μ -PrepCell, 5) MS. Pulse settings: $E_1 = 1.5V$, $t_1 = 1s$, $E_2 = 0V$, t2 = 0.1s, ts = 40 ms

5. Results

5.1. Reduction Efficiency

Figure 3: Reduction of insulin into chain A and B. Only chain B displayed. Insulin 10 μg/mL, diluted in 1%FA 50% Acetonitrile/ H₂O, 50 μL/min, E = 1.5 V

In Figure 3 the reduction of insulin into chain A and B is shown. Almost complete (99%) reduction of the two inter chain S-S bonds was observed as soon as the cell was turned on.

5.2. Flow Rate vs. Reduction Efficiency

Figure 4: Influence of the flow rate through the cell on the reduction efficiency. Optimal flow rate range: 20 - 150 µL/min

5.3. Acidity vs. Reduction Efficiency

Figure 5: Influence of % Formic Acid (FA) in mobile phase on reduction efficiency. At 1% almost full reduction (98%), at 0.1% only 56%

Figure 6: (A) Short term reproducibility of 5 consecutive injections of insulin with no cell, cell off, cell on and chain B.
(B) Long term reproducibility of reduction efficiency measured on 100 injections of insulin.

5.5. Cell to Cell Reproducibility

Figure 7: Reproducibility of 3 different cells, randomly assembled

5.6. Fouling of Cell and Electrode

Figure 8: Picture of (A) Pt electrode and (B) Ti inlet block after several days of operation.

5.7. Reduction of Avastin[®] Fab Fragment

Figure 9: Electrochemical reduction of Avastin Fab digest consisting of intact 100 KDa fragment and different digest forms of 75, 50 and 25 kDa. Separated and reduced by on-line Capillary LC-EC-MS. Flow rate Cap LC: 1 uL/min + 19 ul/min makeup flow prior to on-line reduction. After reduction, clearly visible light chain (Lc) with mass of 23437.44 Da.

Figure 10: MS Spectrum of Lc with annotation of some charge states, A16-A25

6. Results

The new dual electrode µ-PrepCell for disulfide bond reduction in proteins provides the following features:

- Excellent reduction efficiency
- Robust and stable reduction w/o cell fouling
- Good cell to cell reproducibility

Acknowledgement: Dr. Theo M. Luider et al., Erasmus MC, Rotterdam, NL, for the data on Avastin Fab reduction.